Generating realistic images to accurately predict changes in the structure of brain MRI can be a crucial tool for clinicians. Such applications can help assess patients’ outcomes and analyze how diseases progress at the individual level. However, existing methods developed for this task present some limitations. Some approaches attempt to model the distribution of MRI scans directly by conditioning the model on patients’ ages, but they fail to explicitly capture the relationship between structural changes in the brain and time intervals, especially on age-unbalanced datasets. Other approaches simply rely on interpolation between scans, which limits their clinical application as they do not predict future MRIs. To address these challenges, we propose a Temporally-Aware Diffusion Model (TADM), which introduces a novel approach to accurately infer progression in brain MRIs. TADM learns the distribution of structural …