With the huge expansion of artificial intelligence in medical imaging, many clinical warehouses, medical centres and research communities, have organized patients’ data in well-structured datasets. These datasets are one of the key elements to train AI-enabled solutions. Additionally, the value of such datasets depends on the quality of the underlying data. To maintain the desired high-quality standard, these datasets are actively cleaned and continuously expanded. This labelling process is time-consuming and requires clinical expertise even when a simple classification task must be performed. Therefore, in this work, we propose to tackle this problem by developing a new pipeline for the modality classification of medical images. Our pipeline has the purpose to provide an initial step in organizing a large collection of data and grouping them by modality, thus reducing the involvement of costly human raters. In our …