An explainable medical imaging framework for modality classifications trained using small datasets

Abstract

With the huge expansion of artificial intelligence in medical imaging, many clinical warehouses, medical centres and research communities, have organized patients’ data in well-structured datasets. These datasets are one of the key elements to train AI-enabled solutions. Additionally, the value of such datasets depends on the quality of the underlying data. To maintain the desired high-quality standard, these datasets are actively cleaned and continuously expanded. This labelling process is time-consuming and requires clinical expertise even when a simple classification task must be performed. Therefore, in this work, we propose to tackle this problem by developing a new pipeline for the modality classification of medical images. Our pipeline has the purpose to provide an initial step in organizing a large collection of data and grouping them by modality, thus reducing the involvement of costly human raters. In our …