The detection of near duplicate images in large databases, such as the ones of popular social networks, digital investigation archives, and surveillance systems, is an important task for a number of image forensics applications. In digital investigation, hashing techniques are commonly used to index large quantities of images for the detection of copies belonging to different archives. In the last few years, different image hashing techniques based on the Bags of Visual Features paradigm appeared in literature. Recently, this paradigm has been augmented by using multiple descriptors (e.g., Bags of Visual Phrases) in order to exploit the coherence between different feature spaces. In this paper we propose to further improve the Bags of Visual Phrases approach considering the coherence between feature spaces not only at the level of image representation, but also during the codebook generation phase. Also we …